A Bayesian Network for Outbreak Detection and Prediction
نویسندگان
چکیده
Health care officials are increasingly concerned with knowing early whether an outbreak of a particular disease is unfolding. We often have daily counts of some variable that are indicative of the number of individuals in a given community becoming sick each day with a particular disease. By monitoring these daily counts we can possibly detect an outbreak in an early stage. A number of classical time-series methods have been applied to outbreak detection based on monitoring daily counts of some variables. These classical methods only give us an alert as to whether there may be an outbreak. They do not predict properties of the outbreak such as its size, duration, and how far we are into the outbreak. Knowing the probable values of these variables can help guide us to a cost-effective decision that maximizes expected utility. Bayesian networks have become one of the most prominent architectures for reasoning under uncertainty in artificial intelligence. We present an intelligent system, implemented using a Bayesian network, which not only detects an outbreak, but predicts its size and duration, and estimates how far we are into the outbreak. We show results of investigating the performance of the system using simulated outbreaks based on real outbreak data. These results indicate that the system shows promise of being able to predict properties of an outbreak.
منابع مشابه
A Disease Outbreak Prediction Model Using Bayesian Inference: A Case of Influenza
Introduction: One major problem in analyzing epidemic data is the lack of data and high dependency among the available data, which is due to the fact that the epidemic process is not directly observable. Methods: One method for epidemic data analysis to estimate the desired epidemic parameters, such as disease transmission rate and recovery rate, is data ...
متن کاملCrack Detection of Timoshenko Beams Using Vibration Behavior and Neural Network
Abstract: In this research, at first, the natural frequencies of a cracked beam are obtained analytically, then, location and depth of a crack in beam is identified by neural network method. The research is applied on a beam with an open crack for three different boundary conditions. For this purpose, at first, the natural frequencies of the cracked beam are obtained analytically, to get the ex...
متن کاملForecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique
Artificial neural network is considered one of the most efficient methods in processing huge data sets that can be analyzed computationally to reveal patterns, trends, prediction, forecasting etc. It has a great prospective in engineering as well as in medical applications. The present work employs artificial neural network-based curve fitting techniques in prediction and forecasting of the Cov...
متن کاملA Bayesian spatio-temporal method for disease outbreak detection
A system that monitors a region for a disease outbreak is called a disease outbreak surveillance system. A spatial surveillance system searches for patterns of disease outbreak in spatial subregions of the monitored region. A temporal surveillance system looks for emerging patterns of outbreak disease by analyzing how patterns have changed during recent periods of time. If a non-spatial, non-te...
متن کاملDeterminants of Outbreak Detection Performance
Introduction The choice of outbreak detection algorithm and its configuration can result in important variations in the performance of public health surveillance systems. Our work aims to characterize the performance of detectors based on outbreak types. We are using Bayesian networks (BN) to model the relationships between determinants of outbreak detection and the detection performance based ...
متن کامل